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Abstract

This essay examines the prospects and limits of ‘reverse inferring’ cognitive processes
from neural data, a technique commonly used in cognitive neuroscience for discriminat-
ing between competing psychological hypotheses. Specifically, we distinguish between
two main types of reverse inference. The first kind of inference moves from the lo-
cations of neural activation to the underlying cognitive processes. We illustrate this
strategy by presenting a well-known example involving mirror neurons and theories
of low-level mind-reading, and discuss some general methodological problems. Next
we present the second type of reverse inference by discussing an example from recog-
nition memory research. These inferences, based on pattern-decoding techniques, do
not presuppose strong assumptions about the functions of particular neural locations.
Consequently, while they have been largely ignored in methodological critiques, they
overcome important objections plaguing traditional methods.
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1 Introduction

Cognitive neuroscience is based on the plausible idea that our understanding
of the mind has much to gain from investigations into the workings of the
brain. Over the last few decades, this steadily-growing field has substantially
advanced our studies of relatively modular systems, like vision and touch, and
promises to seriously contribute to the resolution of longstanding disputes in
various domains of higher-cognition. To achieve this ambitious aim, one of the
most commonly used techniques is reverse inference, that is, the practice of
inferring, in certain tasks, the engagement of cognitive processes from patterns
or locations of neural activation. Since different psychological theories often
make incompatible assumptions about the processes underlying a specific cog-
nitive task, reverse inference can, in principle, be used to discriminate between
competing hypotheses.

Scientists and philosophers often talk about reverse inference tout court.
However, this article shows that it is crucial two distinguish between two differ-
ent types of reverse inference. In the first kind, cognitive processes are inferred
from the particular locations of neural activation observed in particular tasks.
We examine these location-based inferences through a case study on the nature
of mind-reading. Some prominent scientists have argued that mirror neurons
provide decisive evidence for embodied theories of mind-reading. Their argu-
ment is based on a paradigmatic location-based reverse inference. In the first
part of this essay, we show that this argument fails (§2) and, in doing so, we
highlight some inherent problems with this kind of inference (§3).

Critiques of location-based inference are widespread. Indeed, prominent re-
searchers have gone as far as suggesting that reverse inference should be removed
from the toolkit of cognitive neuroscience. In the second part of this essay, we
maintain that this more radical step should be resisted. Drawing on a recent case
study of recognition memory, we argue that a second kind of inference, based on
pattern-decoding techniques, overcomes the problems faced by location-based
inferences. In particular, we show that pattern-based inference does not pre-
suppose any problematic ‘neo-phrenological’ assumptions about functional lo-
calization in the brain. As a result, pattern-decoding techniques overcome some
of the oldest and most resilient objections which have been raised against the
methodology of cognitive neuroscience (§4). Although pattern-based inferences
are quickly gaining popularity among cognitive neuroscientists, they are still
largely ignored in most methodological discussions.

2 Location-Based Reverse Inference (LRI)

To introduce location-based reverse inference (LRI), consider some neuroscien-
tific studies of ‘mind-reading,’ the capacity to identify and predict the mental
states and behavior of others. The two main competing cognitive explanations
of this capacity are the theory theory (TT) and the simulation theory (ST).

(TT) According to the theory-theory, mind-reading is based on a science-like
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folk theory of mind, which includes law-like generalizations over symbolic
representations of the following categories: (a) observable inputs and men-
tal states; (b) mental states and other mental states; (c) mental states and
observable outputs (Gopnik and Wellman 1992; Fodor 1992).

(ST) According to the simulation theory, mind-reading is based on the capacity
to take other agents’ perspective by simulating their mental states and
actions as if they were one’s own. This allows us to access directly the
intentional states or actions that, in our own case, would cause and re-
sult from the simulated states, and attribute them to others (Gallese and
Goldman 1998).

In emphasizing the symbolic and abstract nature of higher-cognition, TT follows
the cognitivist tradition of Descartes and Kant and, more recently, Chomsky
and Fodor. In contrast, ST’s assumption that the vehicles of cognition have a
sensory-motor format, locates it in the empiricist tradition of Locke and Hume.

It should be clear that TT and ST provide distinct, intuitively plausible,
and yet mutually incompatible accounts of mind-reading. How does one choose
one over the other? Some authors have argued that mirror neurons—brain
cells that fire both when an organism acts and when the organism observes the
same type of action performed by someone else—provide decisive evidence in
favor of ST over TT (Gallese and Goldman 1998; Iacoboni 2009; Rizzolatti and
Sinigaglia 2010).1 The key data was obtained using experimental variations
of two tasks (Rizzolatti et al. 2009; Kilner and Lemon 2013). The first task
involves executing a basic-level motor act, such as grabbing a cup, or more
complex tasks, such as grabbing a cup to drink from it; the second task involves
observing another agent performing the same type of motor acts. To see whether
these discoveries provide evidence in favor of ST or TT, let us begin by spelling
out the predictions, at both the cognitive and neural levels, of each hypothesis.

According to TT, subjects possess concepts for simple motor actions, such as
grab. These simple concepts, conceived as a-modal symbolic representations,
can be recursively combined with other concepts to represent more complex
motor acts, such as grab a cup to drink, and invoked in folk-psychological
generalizations expressing regularities such as ‘subjects who grab cups to drink
tend to be thirsty.’2 The crucial point is that, according to TT, the same

1There are various reasons why studies of motor-acts and mirror neurons are especially
apt to clarify the structure of LRI. First, the relevant neural-level data is quite clear and has
been extensively replicated. Second, such data was obtained by using single-cell recordings,
which allows us to focus on reverse inference per se, without addressing tangential problems
regarding more controversial data-gathering tools, such as fMRI.

2Although these concepts are a-modal, they interface with sensory and motor processes.
On the sensory side, these concepts can be applied based on perceptual cues; on the motor
side, they can be used to form intentions to act so that, when we form an intention to grab
that red cup, one usually executes the corresponding motor act and, indeed, grabs the red
cup as opposed to, say, biting it. These interface conditions are sometimes called ‘legibility
constraints’ since, to be usable, a conceptual system (even an a-modal one) must be legible
at its input-output interfaces, so that perceptual inputs can lead to the tokening of concepts,
and action concepts can be translated into the appropriate motor commands.
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concept, grab, is tokened both when an act is categorized as a ‘grabbing act’
and when it is intentionally executed, that is, both when we categorize (or
imagine) the grabbing actions of others and when we form an intention to grab.
TT’s prediction that both execution and observation tasks involve tokens of
grab (or, in more complex cases, tokens of grab cup∧drink) has implications
at the neural level. If TT is correct, then the neural implementation—and,
consequently, the neural activation pattern that codes for tokens of grab—
should be instantiated when grabbing actions are both executed and observed.
Of course, TT does not presuppose that such neural patters are identical; all it
requires is that both representations be tokens of the same type, that is, tokens
of the concept grab.

Next, consider ST. Recall that, on this view, simulation is the default mind-
reading process. When subjects perceive others as grabbing a cup, they simu-
late this basic-level motor action as if they were executing it themselves. This
simulation allows a subject to retrodictively determine the intention that she
would have when performing that same act herself, in similar conditions.3 The
key point is that the process tokened in observation is a subcomponent (or
is structurally analogous to a subcomponent) of the corresponding process to-
kened in execution. Hence, at the cognitive level, ST predicts that a subset of
the execution-process is also tokened in observation-processes. At the neural
level, this entails that the implementation of the part of the simulation which is
shared with the execution of the motor process, should be instantiated in both
execution and observation.

At this point, it should be clear that deciding whether TT or ST provides
the correct explanation of mind-reading, based on the experimental contrast be-
tween execution and observation, is not as straightforward as it is sometimes as-
sumed, as both theories predict that there is a key cognitive component present
in both experimental conditions. According to TT, this is the tokening of an
action concept; ST takes this to be the tokening of subsets of motor processes.
Yet, if one could distinguish between tokens of motor-action concepts and to-
kens of motor-action simulations at the neural level, this data could be used
to adjudicate between TT and ST. To see whether this can be done, we now
consider the neural data.

Recall that the neural data was gathered in experiments that compared
two basic conditions: in execution, subjects perform a basic-level motor act; in
observation, subjects observe full or partial evidence that others are executing
the same type of basic-level motor act. The neural data collected in these
studies was obtained using single-cell recordings of macaques (Rizzolatti et al.
2009; Kilner and Lemon 2013), yet fMRI studies suggest that the basic findings

3The details of the simulation process can be spelled out in various ways. On one option,
the process is rather direct, in the sense that the observed motor action is directly matched
by a corresponding representation, which initiates the understanding of that action ‘from the
inside’ (Rizzolatti et al. 2001). In more complex models, subjects generate a candidate goal for
the observed action and then simulate such action as if it were their own. If the action matches
the goal, then that is the goal of the perceived action; in cases of mismatch, the process can
be repeated (Gallese and Goldman 1998). For our purposes, we can remain neutral between
these two models.
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also apply to humans (Rizzolatti and Craighero 2004). Neural-level analyses
revealed both an activation pattern, and a location pattern. A group of mirror
neurons, call it ‘MN,’ is selectively activated in both execution and observation,
and MN is localized in the premotor cortex.

Two clarifications are now in order. First, to say that some neurons are
‘selectively activated in some task’ implies that these same neurons are not
differentially activated in other relevant tasks. This has three implications.
(a) Mirror neurons are not differentially activated by acts that look similar to
(but are not) motor acts, e.g., motions of a hand that are not instances of a
grabbing action, but look relevantly similar (Rizzolatti et al. 1996). (b) Mirror
neurons are activated by instances of the same type of basic-level motor act
even if the cues vary in modality. To illustrate, mirror neurons are activated
not only when a subject sees the full action of grabbing, but also when she
sees only part of the action, or even if she hears evidence of a grabbing-action
(Umilta et al. 2001). (c) Finally, the mirror neurons activated in the execution
and the observation of a basic-level motor act, such as grabbing a cup, are also
activated when the act is embedded in a more complex one, such as grabbing
a cup to drink. Interestingly, if you compare a set of execution vs. observation
conditions involving a complex act (grabbing a cup to drink) with a set involving
a different complex act (grabbing a cup to clean), some mirror neurons fire in
both sets of conditions, since both sets involve grabbing acts, whereas others
fire in only one of the two (drinking vs. cleaning) sets (Fogassi et al. 2005;
Iacoboni et al. 2005). Second, while we identified two different components
of the result—the pattern across tasks and the location of the mirror neurons
involved—ST-theorists rarely separate these two aspects. However, keeping
patterns and locations distinct will allow us to determine the relative inferential
weight carried by the specific location of mirror neurons. Importantly, both
kinds of inferences—from patterns of neural activation to cognitive processes and
from locations of activation to cognitive processes—are common in neuroscience.
Neither of these kinds of reverse inference, however, should be confused with
the pattern-decoding techniques discussed in §3.

With all of this in mind, we can now examine the reverse inference that
allegedly supports ST over TT. Recall that, in reverse inference, the engagement
of a cognitive process (in a set of tasks) is inferred from neural data, usually
consisting of specific patterns or locations of neural activation. The conditional
probability that a particular cognitive process is engaged, given a set of tasks
and neural data, depends on the probability of the neural activation in the
task, given the hypothesized cognitive process. Hence, in order to determine
whether MN provides any reason to select TT over ST, or vice versa, we need
to determine the likelihood of the neural results, given TT and ST, respectively.

Consider, first, the mirror neuron pattern, that is, the result that a par-
ticular set of neurons selectively fires at the same rate in both execution and
observation tasks. As noted, TT assumes that both conditions engage tokens
of the same motor concept. Consequently, TT predicts some neural overlap in
both conditions, namely, the pattern that codes for these tokens of the same
concept-type (in our example, the uniform and selective firing rate of MN ). ST
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makes essentially the same prediction but, in this case, the uniformity is due to
partially overlapping motor processes being engaged in both conditions, as op-
posed to tokenings of the same concept.4 In short, TT and ST both predict an
overlap in part of the neural pattern observed in both conditions (execution and
observation) but neither makes specific predictions regarding the fine-grained
structure of this pattern.

Next, consider location, the result that MN (the set of mirror neurons that
selectively fire at the same rate in both execution and observation), are located
in the premotor cortex. These considerations seem especially relevant because
of a key difference between TT and ST. According to TT, what execution and
observation share is the tokening of the same concept, which is taken to be an
abstract representation that cannot be reduced to sensory or motor processes.
In contrast, ST claims that what both tasks share is a partial overlap of the
same type of motor process, in one case as part of a motor act and, in the other,
as part of a simulation. At this level of informal description, the location of
mirror neurons might seem to provide decisive evidence in favor of ST over TT
for, as ST-theorists note, most neurons in the premotor cortex are known to be
involved in motor acts.5 This suggests that mirror neurons implement subsets
of motor plans rather than a-modal motor action concepts.

Despite the intuitive appeal of these considerations, we argue that ST does
not predict or explain the location of mirror neurons better than TT; strictly
speaking, both theories are equally compatible with the neural results. The
problem with the above reasoning has two sources. First, it misconstrues the
predictions of TT regarding the neural encoding of motor-act concepts; second,
it overestimates ST’s prediction regarding the neural implementation of simu-
lations. We now elaborate both points, in turn. Beginning with TT, as noted,
this hypothesis entails that, when planning a motor act such as grabbing a cup,
agents form an intention that tokens the concept grab cup. This intention
then interfaces with and instructs motor regions that carry out the computa-
tions required to execute the action. In the observation case, the corresponding
act is understood as an instance of grab cup together with a representation of
a different agent. While, strictly speaking, TT does not predict that tokens of

4Strictly speaking, TT and ST only make this prediction on the assumption that tokens of
the same cognitive process have uniform neural implementations. Although, in principle, this
uniformity assumption could be challenged (for example, based on radical forms of multiple-
realizability), it is a fundamental presupposition of cognitive neuroscience that we shall take
for granted in our discussion.

5Indeed, ST theorists sometime insist that it is the location of mirror neurons in the pre-
motor cortex that provides decisive evidence in favor of ST over TT (Rizzolatti and Sinigaglia
2010). For instance, given that mirror neurons fire across modalities, one might be tempted
to conclude that these brain cells are a-modal. ST theorists, however, resist this move and
propose instead that, since mirror neurons are located in the premotor cortex, they should be
conceived as translating various modalities to the motor modality, as opposed to translating
modalities into a non-modal abstract representation. A further consideration often used to
defend ST appeals to deficit patterns caused by neurodegenerative diseases that affect the
motor system. However, once we admit that motor concepts could be tokened in and inter-
face with premotor areas, much of this evidence becomes irrelevant for the debate between
TT and ST (cf. Hickok 2014).
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motor act concepts are encoded in premotor areas, such a discovery is perfectly
compatible with TT. Given that premotor areas are involved in motor actions,
this location is a very plausible candidate for the interface between tokens of
motor intentions (involving motor act concepts) and the operations involved in
motor executions. In short, although, strictly speaking, TT does not predict
the location of mirror neurons, it is certainly not undermined by it either.6

This conclusion might be viewed as good news for ST. However, to conclude
that ST is supported by the neural data, it is not sufficient to just show that
ST is compatible with the MN location. In addition, we must also show that
ST predicts that data in a stronger sense than TT. Does ST’s prediction fit the
neural data more naturally or accurately than the analogous prediction of TT?
Unfortunately, the answer seems negative. ST is surely compatible with motor
simulations being implemented in the premotor cortex; but the theory does not
entail this result any more than TT does. To illustrate, suppose that execution
and observation showed instead that the MN pattern was localized in premotor
areas in one task but in the prefrontal cortex in the other. Would this undermine
ST? Clearly not. The neural location that implements a simulation process
could be different from the location that implements the simulated process for
various reasons. For instance, this could be a hardware solution to getting and
keeping the simulation processes offline. Of course, there would have to be a
way to determine that the neural pattern is the implementation of a simulation
of the target process, but this information could be revealed by the details of
the actual firing pattern, independently of the location. Note that this sort of
reasoning is not unusual. This is the way in which experimenters often try to
show that, although the perirhinal cortex is not the locus of spatial processing,
it carries spatial information, and although the hippocampus is not the locus of
item-processing, it carries item related-information (more on this below).

Admittedly, questions concerning which areas of the brain could implement
motor-action concepts and simulation processes are somewhat puzzling. The
reason for this is that we do not know enough about how cognitive represen-
tations and operations are extracted, encoded, and tokened at the neural level
to be able to substantially narrow the range of neural locations that could per-
form the categorization operations of TT or the simulation processes of ST.
The conclusion of the above discussion is that TT and ST are both compatible

6This has interesting implications for the debate between ‘a-modal’ and ‘embodied’ theories
of concepts. Nothing currently known about the nature of neural computation and represen-
tation prevents one from holding that a-modal concepts about, say, tactile, visual, or auditory
domains are encoded in neural locations which are topologically close to the areas that process
tactile, visual, or auditory stimuli. Thus, TT can assume, as a reasonable working hypothesis,
that concepts for basic-level motor acts are encoded in areas topologically close to the motor
areas involved in action execution. To be sure, this closeness between locations of concept
tokenings and their corresponding input-output interfaces is not quite predicted by TT. This
is because one cannot a priori dismiss other ‘hardware’ solutions to processes such as extract-
ing conceptual categories from sensory and motor modalities, applying concepts to sensory
inputs, and using concepts to form motor intentions that can interface with motor processes
to execute actions. Still, TT does not presuppose any distance between sites where sym-
bolic concepts are encoded (in long-term and working memory tasks) and the corresponding
input-output processing regions with which they can interface.
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with location-data provided by mirror neuron studies. To be clear, we are not
denying that we know quite a bit about the function of premotor neurons, and
by extension, of premotor mirror neurons, for instance, that they are ‘involved’
in action planning, execution and recognition. However, in debates between TT
and ST what we have on the table are two competing accounts of the precise
computational form of the processes involved in action planning, execution and
recognition. Pointing out the premotor location in which those operations are
implemented does not, by itself, help us select which of the competing operations
are actually used.

3 LRI: General Problems and Limitations

In the previous section, we have seen that MN location, that is, the discovery
that the relevant pattern of mirror neurons is localized in the premotor cortex,
does not provide conclusive evidence to select ST over TT (or vice versa), as
an explanation of mind-reading. In this section, we extend the discussion into
some general limitations of location-based reverse inference (LRI). Specifically,
we begin by identifying a key assumption for the proper use of reverse inference,
which we call the ‘linking condition’. Next, we argue that this linking condition
is extremely hard to fulfil for any study that infers cognitive process from the
location of neural activation. In the second part of the article, we present an
influential technique, multivariate pattern analysis, supporting a different type
of reverse inference, which overcomes the problems faced by LRI.

To spell out the assumption that, we maintain, any properly conducted
reverse inference should meet, suppose that C and D are two competing hy-
potheses of the cognitive processes underlying some task t. Further assume that
C posits the engagement of cognitive process c, D posits the engagement of
cognitive process d, c 6= d (c and d are not the same process), and let n stand
for a differential pattern of neural activation in some specific location. A reverse
inference from the presence of n in t to the engagement of c in t requires the
existence of independent studies that establish a link between n and c. The
reason for this should be obvious: in order for the observation of n to support
C over D, there must be a corroborated connection between n and c, that is, it
must be shown that n is evidence for c and that n is not evidence for d. Let us
call these background studies ‘linking studies.’ Provided that there is a robust
linking study connecting n with c, experimenters can use the observation that
n is engaged in t to infer that c (and not d) is engaged in t, providing evidence
in favor of C over D.

Important as they are, linking studies are hard to obtain. In particular,
there are (at least) two problems that must be avoided. First, the connection
between c or d with n cannot be obtained a priori, but must be discovered
though painstaking experimental work. This experimental work typically re-
quires determining whether n is connected to c or d, in the context of some task
t* which, to avoid circularity, must be different from task t.7 However, if C

7To minimize the possibility of violating the linking condition, properly conducted reverse
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and D differ not only in their predictions for task t, but also in their cognitive-
level interpretation of t* then the linking studies that associate n to, say, c are
problematic, as they ignore one of the competing alternative theories, namely,
D. Second, even if the linking studies of c and n are properly conducted, in the
sense that they are not biased toward any alternative, the region of the brain
where n is located could be multi-functional, that is, it might also be known to
implement other cognitive processes. Obviously, the two problems are not inde-
pendent: the less selective the brain region of interest, the stronger the chance
that linking studies ignored that n could also implement d.

Let us now apply this reasoning to the debate between TT and ST. The
appeal to MN location in support of ST over TT falls prey to precisely these
shortcomings. Specifically, to give a functionalist-level interpretation of the MN
location, ST-theorists do not appeal to any tasks in which it is reasonably uncon-
troversial that something like simulation processes (or some key subcomponent)
is engaged. Furthermore, in the tasks that are considered—the variations of
execution that generate mirror neuron activation—what is under dispute is pre-
cisely their fine-grained functional interpretation. This is a clear instance of
the first problem isolated above: mere activation in premotor areas does not
have a cognitive-level interpretation that is relevant to adjudicate between ST
and TT. This is because ST and TT provide different cognitive-level accounts
of the interface between intentions for and execution of basic-level motor acts.
Consequently, they provide different accounts of what is going on in premotor
areas, in tasks such as execution. As a result, obtaining the same activation in
premotor areas in observation is compatible with both cognitive-level accounts:
TT and ST.

It might seem reasonable to suppose that the mind-reading debate is par-
ticularly susceptible to these problems. Perhaps the differences between TT
and ST, in the observation vs. execution experimental context, are especially
subtle, or maybe the fine-grained computational diversity of the premotor cor-
tex is unique. These conjectures, however, do not withstand serious scrutiny.
More or less overt violations of the ‘linking condition’ can be found in a num-
ber of reverse inferences used in studies of higher-cognition (Coltheart 2006a,
2013). This is not accidental. The most common technique employed in studies
of higher cognition to make neural data bear on competing cognitive-level hy-
potheses is LRI, where the engagement of a cognitive process in a task is inferred
from a particular location of neural activation (Shallice and Cooper 2011). LRI
faces a systematic difficulty in satisfying the linking condition—that is, avoiding
the two problems identified above—because the brain regions of interest are sel-
dom selective. Most neural areas implement several cognitive processes, ranging

inferences invoke, as part of their background studies, tasks that are relevantly different from
those subsequently used to discriminate among the competing cognitive hypotheses. Fur-
thermore, the links to neural data should be established in tasks in which experimenters can
control, with reasonable confidence and without ignoring any of the theories that will be sub-
sequently tested, the engagement of the relata on the cognitive side. Of course, in the tasks
then used to evaluate the competing hypotheses, the engagement of the cognitive process of
interest is at issue, and the probability of its presence is reverse inferred from the resulting
location of neural activation.
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from completely distinct and independent to subtly different and interconnected
ones. It is this functional diversity, we surmise, that undermines the plausibility
and robustness of many LRIs.

At this point, one could argue that the general lack of selectivity of brain
regions does not undermine the plausibility of LRI. Rather it is a methodolog-
ical ‘caveat’ that might also serve the positive function of a general warning
against explaining serious scientific claims in terms of ‘just so stories.’ Indeed,
recent discussions of reverse inference have promptly noted and addressed the
problem that activation in a region could also signal the engagement of cog-
nitive processes other than the ones posited by the hypothesis under scrutiny.
Whether expressed in Bayesian (Del Pinal and Nathan 2013; Hutzler 2014) or
likelihoodist terms (Machery 2014), if the experimental settings are designed
appropriately and the linking studies are reliable, the general solution consists
in recognizing that experimenters can ignore cognitive hypotheses which are not
part of at least one of the competing theories. In short, while LRI is, in prin-
ciple, a sound inference, its usefulness is much more limited than enthusiastic
supporters often recognize. This is a problem since, illustrated in the mind-
reading case, substantial debates often involve disputes about the fine-grained
cognitive functions carried out in particular tasks and neural locations, and we
need a way to discriminate between such hypotheses.

The tension between lack of selectivity and LRI occurs at various levels of
analysis. At a relatively coarse level, the difficulty arises from the controver-
sial assumption that brain regions are relatively selective for coarsely-defined
processes. At a finer level, the difficulty arises from the computational diver-
sity associated with single neurons or groups of neurons in a given region, as
revealed by the discussion of mind-reading. Consider the fine-grained computa-
tional diversity of premotor areas such as macaque area F5. Some neurons in
F5 are selective for action perspective, manner of approach, or final execution
strategy. Some neurons are selective for type of goal. Some are selective for
particular modalities and others are cross modal. In particular, some neurons
are active only during observation and others only during execution (Kilner
and Lemon 2013). Take a neural network with basic units with that amount
of computational diversity, and consider how many different processes—some
more simulation-like, others more categorization-like, and all mimicking the
MN pattern—you could build out of those basic units. In particular, note that
some neurons in premotor areas fire only during observation. Hence, it remains
an open question how exactly we should conceive of the representational for-
mat of the ones that are mirror neurons, i.e., that satisfy the MN pattern. TT
and ST provide two different hypotheses, equally compatible with the data, and
both implementable in a location with this sort of fine-grained computational
diversity.

In conclusion, although LRI is a sound inference, its correct application is too
limited to be of general use in cognitive neuroscience. In the following section, we
shall examine a different kind of reverse inference that, we argue, provides a more
promising and widely-applicable technique to discriminate between competing
cognitive-level hypotheses.
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4 Pattern-Based Reverse Inference (PRI)

Consider, once again, the case of mind-reading. In order to properly assess
the relative plausibility of TT and ST, one needs to set up experimental tasks
in which the cognitive processes posited by ST (motor act simulation) are un-
controversially engaged, tasks in which the cognitive processes posited by TT
(categorization) are uncontroversially engaged and, in each case, map the neu-
ral results onto the corresponding cognitive-level process. In a word, one needs
the appropriate linking studies. One must then compare those neural-level re-
sults with the results obtained in observation, the task in which the identity of
the underlying cognitive process is under dispute. By doing so, one can deter-
mine whether understanding the basic-level motor acts of others is more like
a simulation process or more like a straightforward categorization process. In
the previous section, we argued that location-based reverse inference (LRI) has
substantial problems fitting this bill. The root of the trouble is the computa-
tional diversity of brain regions, which implies that evidence provided by rough
activation in a specific area is of limited value. In this section, we present and
discuss a different kind of reverse inference that, we maintain, fares better on
this score.

Mappings between cognitive functions and patterns of activity in particu-
lar brain regions, even those based on single-cell recordings, are not sufficiently
selective. This point was illustrated via canonical studies of mirror neurons,
which provide a neural pattern, the MN location pattern, consisting of a set
of neurons that fire at the same rate in observation and execution. As noted,
this firing pattern has not been decoded, in the sense that we do not yet know
what sort of process or content is encoded in such firing sequence: that simple
pattern could implement a token concept for a motor act, a subset of motor
processes, or various other states. However, there are other kinds of mappings
that are much more selective. For instance, vector patterns of neural activity,
which contain detailed information about fine-grained cognitive-level represen-
tations and processes, can be decoded with techniques such as multivariate
pattern analysis (MVPA). MVPA uses tools from machine learning to create
statistical machines—called ‘classifiers’—which can decode the cognitive states
or processes encoded in particular neural data sets, such as multi-voxel patterns
obtained using fMRI. These decoded patterns can then be used to reverse infer
the engagement of specific cognitive processes (Poldrack 2008, 2011; Poldrack
et al. 2011; Tong and Pratte 2012).

To illustrate MVPA, consider a study in episodic memory research about
the cognitive processes underlying our capacity to classify items as ‘old’ or
‘new.’ We formulate this recognition capacity as follows, where s ranges over
‘normal’ adults. A set E contains some items that are new to s and others
that s has previously encountered. If s is randomly presented from an item
e ∈ E and has to determine whether or not she has already encountered e, s
can reliably distinguish between ‘old’ and ‘new’ items. Most researchers now
accept some version of a dual-process theory of recognition. Two prominent
competing explanations are the following (note the interesting parallels with
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the mind-reading debate):

(RR) Recognition decisions are based on two processes which draw on two dis-
tinct sources of information: recollection of specific details and non-specific
feelings of familiarity. Recollection is used by default but, when such in-
formation is unavailable, subjects employ familiarity.

(RF ) Recognition decisions are based on two processes which draw on two dis-
tinct sources of information: recollection of specific details and non-specific
feelings of familiarity. However, neither is the default process: the source
of information employed depends on specific contextual cues.

RR and RF posit the same components to explain recognition decisions; what
distinguishes them are the different interactions among those constituents. Ac-
cording to RR, recollection information is used by default to determine whether
or not an item is ‘old,’ and familiarity is only reverted to when such informa-
tion is unavailable. In contrast, RF implies that certain contextual cues will
sometimes induce subjects to make familiarity-based recognition decisions even
when recollection-information is available.

To test these hypotheses, ‘pattern classifiers’ are trained to determine the
specific multi-voxel patterns associated with recollection and familiarity pro-
cesses. More precisely, classifiers are trained in tasks where experimenters are
able to control which cognitive process is engaged, thereby explicitly meeting
one of the linking conditions for reverse inference. For instance, in one experi-
ment, which will serve as our main example, subjects were exposed to singular
and plural words, such as ‘shoe’ and ‘shoes’ (Norman et al. 2009). These sub-
jects were then scanned while performing recognition tasks involving previously
examined items (e.g., a shoe) and unrelated lures (e.g., a bicycle). The recogni-
tion tasks were divided into two disjoint sets: recollection blocks and familiarity
blocks. In recollection blocks, subjects were explicitly instructed to recall specific
details of the mental image formed during the study phase, and to only answer
‘yes’ if they were successful in that recollection. In contrast, in familiarity blocks
subjects were instructed to only answer ‘yes’ if they found the word familiar and
to ignore any details they might recollect from the study phase. After a train-
ing phase, classifiers were able to reliably determine whether some multi-voxel
pattern of neural activation is an instance of recollection or familiarity.

What gives MVPA-based inferences a substantial advantage over traditional
LRIs is that the reliability of the classifiers can be established within the ex-
periment itself. In our example, this can be done by saving a subset of the
recollection and familiarity blocks for later testing (so that they are not used at
the ‘training stage’) and then determining the rate at which the classifier cor-
rectly categorizes the corresponding neural patterns. This phase of the study,
where experimenters can control which process is engaged, provides the links
between recollection, familiarity and their corresponding multi-voxel patterns
that can then be used in reverse inference. Once these links are established, one
can test competing hypotheses RR and RF in cases where the engagement of
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the sub-processes cannot be directly controlled.8

In a second phase of the study, subjects were scanned while being exposed
to a mixture of previously observed items (‘shoe’ and ‘ball’), unrelated lures
(‘horse’ and ‘box’) and previously unobserved switch-plurality lures (‘balls’).
The subjects’ task was to determine whether the words they encountered were
‘old’ or ‘new.’ To test the competing cognitive-level hypotheses, experimenters
examined the subset of tested items for which subjects made correct recognition
decisions. Note that, since these are cases where both recollection and familiar-
ity information was available to subjects, RR and RF make different predictions
about what is going to happen. According to RR, the classifier should cate-
gorize all the corresponding voxel patterns as recollections patterns, since this
is the default. RF , in contrast, predicts a more variable classification, involv-
ing at least some instances of familiarity-patterns, given that neither pattern
should be used by default. The MVPA experimental results support RF over
RR (Norman et al. 2009). When both types of information are available, vari-
ous contextual cues determine whether familiarity or recollection is used as the
basis of a subject’s recognition decision. In other words, contextual cues deter-
mine whether, according to the classifier, the multi-voxel patterns underlying
recognition decisions resemble more unambiguous familiarity or unambiguous
recollection patterns.

Let us call a reverse inference based on pattern-decoding techniques such as
MVPA, a pattern-based reverse inference (PRI). We conclude our discussion by
emphasizing three substantial advantages that PRIs have over LRIs, regarding
both experimental practice and philosophical implications. First, PRI allows
for the reliability of classifiers to be determined within a phase of the same
experiment in which they are employed. This feature of PRI fulfills the linking
condition and allows experimenters to quantify their confidence in particular re-
verse inferences, thus providing a substantial advantage over LRI. As discussed
in §3, successful reverse inference presupposes the existence and availability
of robust and accurate links between levels. The linking studies required to
establish these bridge laws confronted LRI with several difficulties stemming,
for the most part, from the lack of selectivity of most brain regions of interest.
Consequently, when the differences between competing cognitive hypotheses are
subtle, the linking studies often ignore or underestimate the resources available

8The question arises whether we can extend the reliability of classifiers obtained from the
testing phase to cases in which the experiments cannot determine the engagement of the
psychological variables, since the latter inevitably involve some variation on the task. There
are various studies which suggest that classifiers perform well under task variations. For
example, in one study pattern classifiers were used to predict phonemes. The classifiers were
still successful when presented with data from voices which were not presented in the learning
phase (Formisano et al. 2008). Hence, at least this much variation in the task does not affect
performance. In a study of visual working memory, classifiers were trained on data elicited
by unattended gratings, and then tested on whether they could also predict which of two
orientations was maintained on working memory when subjects were viewing a blank screen.
Again, their reliability was maintained despite the substantial difference in stimuli and tasks
(Harrison and Tong 2009). Indeed, testing for this kind of robustness relative to stimuli/task
variation is usually taken as evidence that the brain region from which the data was obtained
really does provide information about the function of interest (Tong and Pratte 2012).
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to one (or both) of these hypotheses. This problem becomes evident in the TT
vs. ST debate, where the functional interpretation of premotor areas (especially
in execution tasks) according to TT is basically ignored. To make things worse,
even if the linking studies presupposed in a specific LRI are, in themselves,
non-problematic, we still have to consider other tasks that might activate the
brain regions of interest and ask, for each task, whether it might be relevant for
the hypothesis under scrutiny. Readers familiar with meta-analyses of function-
structure mappings know how frustrating and confusing these studies can be
(Poldrack 2011; Lindquist et al. 2012). It is important to realize that the prob-
lem is not primarily due to the resolution of the neuroscientific tools commonly
employed in LRI, such as fMRI. In this respect, the example of mind-reading,
discussed in §2, is particularly instructive. The single-cell recording technique
used in mirror neuron studies of macaques reveals quite starkly the fine-grained
computational diversity of neurons in the premotor cortex. Hence, the main
problem has to do with computational diversity, which goes all the way down to
the function of single neurons, making it often difficult—or even impossible—
to determine the precise degree to which an LRI should affect our confidence
in a given hypothesis. In contrast, MVPA and other techniques employed in
PRI, decode cognitive processes from multidimensional vector patterns—as op-
posed to regions—of neural activation. As noted, when using these techniques,
the reliability of the classifier underlying a particular reverse inference can be
established within the experiment. To be sure, different kinds classifiers will
vary in their success depending, among other things, on the type of task, the
number and specificity of learning trials, the brain regions used for analysis (if
restricted), and the nature of the machine learning algorithms (Poldrack et al.
2011). In the above recognition example, classifier accuracy was around 60%.
However, in other tasks, such as those involving categorization of basic-level
objects, the accuracy of classifiers can be much higher (Haxby et al. 2014).

A second advantage of PRIs follows from the fact that classifiers do not
‘assume’ the functional localization of cognitive states or processes of interest.
The multi-voxel patterns used by classifiers can be distributed across the brain.
Of course, experimenters can restrict the analysis to particular brain regions,
especially if there are independent reasons to believe that a specific brain area
is involved in some task, or if what is under scrutiny is the degree to which a
region is responsible for executing some task. However, classifiers can also take
non-localized, widely-distributed multi-voxel patterns. This is especially useful
when comparing complex multi-step processes that likely involve several brain
regions. All the examples considered in this essay are of this complex kind,
as are most models of higher cognitive capacities in general. The philosophical
significance of this observation is that PRI does not fall prey to one of the oldest
and most resilient objections against the traditional approach of cognitive neu-
roscience (including LRI), namely, that it assumes a strong and objectionable
form of functional locationism (Nathan and Del Pinal 2015). Speaking directly
against this misconception, studies applying PRI can shed light on the degree
of modularity, specialization, and functional localization of various cognitive
processes and brain areas. For instance, MVPA studies consistently show that
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the ventral temporal cortex carries sufficient information for classifiers to accu-
rately distinguish between animate and inanimate objects (Kriegeskorte 2011).
A similar approach may also help in studies previously explored via LRI. To
illustrate, in our discussion of mind-reading, we have seen that the pattern and
location of mirror neurons provide too little information to discriminate between
competing cognitive hypotheses TT and ST. As some authors have pointed out,
this might be because the neural locus of cross-modal action understanding is
more widely distributed, and likely includes non-motor areas (Spaulding 2012).
This hypothesis can be explored with MVPA. Indeed, MVPA studies in this
area show that most of the voxels used to reliably classify actions of the same
type across modalities are distributed in areas that are not canonical human
motor areas or homologues of the macaque F5 (Oosterhof et al. 2013).

A third, and final, advantage of PRI is that the information decoded from
multivariate vector patterns does not depend on previous assumptions about the
coarse function of a given brain region of interest. As discussed above, when
using an LRI, assuming that some brain region has a specific function, coarsely
identified, often does not help adjudicating between subtly distinct hypotheses.
The TT vs. ST case provided a clear example, where the crucial difference lies
between a motor simulation process and an abstract representation of motor
goals or execution processes. The debate between RR and RF illustrated an
even subtler case, where the key distinction turns on the dynamics (as opposed
to the individual components) of recognition decision processes. Once again,
single-cell recordings, such as those recording the firing of mirror neurons in
macaques, are extremely instructive for they highlight the fine-grained compu-
tational diversity of neurons and neural networks within a given brain region
such as the premotor cortex. If one were to build neural networks composed
of units with that much computational diversity, one would be able to develop
processes that resemble the simulations of ST or the categorization processes
of TT. Consequently, even fine-grained activation of these areas in tasks of ex-
ecution and observation cannot, by itself, be used to determine which of these
processes is actually implemented at the neural level. As shown by the recog-
nition memory example, PRI is especially well-suited to solve these kinds of
problems. By training a classifier to ‘learn’ which multi-voxel patterns are asso-
ciated, say, with paradigmatic simulation and abstract categorization processes,
a PRI can detect whether these diverse computational micro-units are working
together in a way that is more like simulation or more like categorization, in the
context of a specific task (e.g., observation).

5 Concluding Remarks

Cognitive neuroscience has recently faced a theoretical, scientific, and popular
backlash. Many philosophers and scientists have been consistently critical of the
impact of neuroscience on the study of higher cognition (Fodor 1974, 1997, 1999;
Coltheart 2006a,b, 2013; Tressoldi et al. 2012; Miller 2008). Similar concerns
have also been raised in various popular publications (Satel and Lilienfeld 2013).
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This reaction is not completely unjustified. For every article providing neu-
roimaging evidence against deontological ethics or classical cognitivism, there is
another one arguing that neuroscience has taught us nothing of relevance about
higher capacities such as decision making and language processing. Our discus-
sion of reverse inference supports a measured optimism. Careful analysis of the
role of mirror neurons in debates about the nature of mind-reading supports
the positions of the ‘neuroskeptics.’ Indeed, respecting the linking condition of
reverse inference is problematic for virtually any LRI. Nonetheless, we tried to
show how PRI provides theoretical tools for overcoming some of these problems.
To be sure, this and other new neuroscientific techniques raise a new host of
challenges. Still, old adagios such as ‘lack of selectivity,’ ‘excessive functional
locationism,’ and charges of implementing a ‘new phrenology’ are not among
them. As the field of neuroscience progresses, it is crucial that philosophers and
theorists in general do not merely focus on traditional technologies and familiar
objections, but also turn their attention to newer and potentially more powerful
pattern-decoding techniques, such as PRI. In an attempt to fuel further discus-
sion and constructive debate, in this essay, we suggested a significant distinction
between ‘two kinds of reverse inference.’
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